References
Baumer, Benjamin S., Daniel T. Kaplan, and Nicholas J. Horton. 2017.
Modern Data Science with r (Chapman & Hall/CRC
Texts in Statistical Science). Boca Raton, Florida: Chapman;
Hall/CRC.
Chen, Tianqi, and Carlos Guestrin. 2016. “XGBoost: A
Scalable Tree Boosting System.” In Proceedings of the 22nd
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 785–94. KDD ’16.
New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/2939672.2939785.
Friedman, J. 2001. “Greedy Function Approximation: A Gradient
Boosting Machine.” https://doi.org/10.1214/AOS/1013203451.
Hvitfeldt, Emil. 2022. ISLR Tidymodels Labs. https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/index.html.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2021. An Introduction to Statistical Learning: With Applications in
r. Second edition. Springer Texts in Statistics. New York:
Springer. https://link.springer.com/book/10.1007/978-1-0716-1418-1.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive
Modeling. Vol. 26. Springer.
Rhys, Hefin. 2020. Machine Learning with r, the Tidyverse, and
Mlr. Shelter Island, NY: Manning publications.
Sauer, Sebastian. 2019. Moderne Datenanalyse Mit r: Daten Einlesen,
Aufbereiten, Visualisieren Und Modellieren. 1. Auflage 2019.
FOM-Edition. Wiesbaden: Springer. https://www.springer.com/de/book/9783658215866.
Spurzem, Lothar. 2017. VW 1303 von Wiking in 1:87.
https://de.wikipedia.org/wiki/Modellautomobil#/media/File:Wiking-Modell_VW_1303_(um_1975).JPG.
Taleb, Nassim Nicholas. 2019. The Statistical Consequences of Fat
Tails, Papers and Commentaries. Monograph. https://nassimtaleb.org/2020/01/final-version-fat-tails/.
Timbers, Tiffany-Anne, Trevor Campbell, and Melissa Lee. 2022. Data
Science: An Introduction. First edition. Statistics. Boca Raton:
CRC Press.
Wickham, Hadley, and Garrett Grolemund. 2016. R for Data Science:
Visualize, Model, Transform, Tidy, and Import Data. O’Reilly Media.
https://r4ds.had.co.nz/index.html.